

Release Note

Integrated Solution System for Bridge and Civil Engineering

Enhancements

Analysis & Design

- 1) Assessment Live Loading to BD 21/01
- 2) Moving Load Analysis to Polish Standard
- 3) Moving Load Optimization to Russian Standard
- 4) Auto-generation of Load Combinations to Polish Standard
- 5) PSC Composite Section Design to Indian Standard
- 6) Linear independent stage analysis
- 7) Time Dependent Materials as per New Zealand Standard
- 8) Time Dependent Materials as per Australian Standard

Pre & Post-Processing

18

3

- 1) Addition of PSC Super-T and I-girder Section DB
- 2) Critical stress locations due to warping for PSC section type

1. Assessment Live Loading to BD 21/01

- BD 21/01 is intended to be used for the assessment of highway bridges and structures in the UK. Assessment loading is generally limited to the application of dead and superimposed dead loads and the type HA live loads. For assessment purposes the HA loads are factored to give the Assessment Live Loading.
- HA loads defined to BD 21/01 can be combined with special vehicles (SV, SOV) as per BD 86/11.
- Define Standard Vehicular Load X Load > Moving Load > Vehicles Standard Name Load > Moving Load > Moving Load Cases BD37/01 Standard Load Reduction Factor = Assessment Live Loading / Type HA Loading Vehicular Load Properties HA Vehicular Load Name : Traffic Flow: High (H), Medium (M), Low (L) HA Vehicular Load Type : Road Surface Categories: Good (g), Poor (p) 6 categories of bridges: Hg, Mg, Lg, Hp, Mp, Lp Load Level: 40t, 26t, 18t, 7.5t, G1FE, G2FE, 3t HA Loading Adjustment Factor (AF) Lane Factor For $0 < L \leq 20$ Lane 1: 1.0Lane 2: 1.0HA Lane Factor $AF = a_{I} / 2.5$ Lane 3: 0.5 BD 37/01 BD 21/01 Lane 4 and subsequent: 0.4 For 20 < L < 40 HA Lane Factor O User-defined (1/L) 0.67 kN/m $AF = 1 + (a_r / 2.5 - 1) \times (2 - L/20)$:L <= 50 w = 336 m (1/L) 0.1 kN/m : 50 <L <= 1600 W = 36 For $40 \le L < 50$: 1600 <L W = 17.2 kN/m Pa = 120 kΝ AF=1. Additional Data 3.65 Adjustment Factor aL : Where $\mathbf{a}_{\mathbf{I}} = 3.65 \text{m}$ and L is the loaded length (m). Reduction Factor Category : Hp Ŧ Load Level : 40t Bridge Specific Live Loading OK Cancel Apply = HA/(Adjustment Factor) x Reduction Factor x Lane Factor

Standard Vehicle Load for BD37/01

1. Assessment Live Loading to BD 21/01 (continued)

Partial factor for loads

The following partial factors will be applied to each type of vehicle loads if the 'Auto Live Load Combination' option is selected.

	ULS Combination 1	ULS Combination 2 & 3
SV/SOV HA	1.1 1.3	1.0 1.3
	SLS Combination 1	SLS Combination 2 & 3
SV/SOV	1.0	1.0

□ Without partial factor

When only one type of vehicle is applied for the assessment of bridges, the 'Auto Live Load Combination' option is not supported. Thus, the partial factor for the vehicle should be applied in the load combination.

 Type of Design Com Oltimate Limit St 	bination Factor tate
 Serviceability Li 	mit State
Combination of Load	ls
Combination 1	
Combination 2 d	or 3
Load Case Data	
Standard Load :	HA
Special Load :	None

fine Moving Load Case	×
Load Case Name :	MV1
Description :	
Select Load Model	
Standard Load (BD 37)	/01, BS 5400)
Special Load (BD 86/1)	1)
📝 Auto Live Load Combina	tion
Type of Design Combinatio	n Factor
Oltimate Limit State	
Serviceability Limit Sta	ite
Combination of Loads	
Ombination 1	
Combination 2 or 3	
Load Case Data	
Standard Load :	HA 👻
Special Load :	SOV 250 🔻
Assignment Lanes	
Line of Lanes Selec	cted Lanes Straddling Lanes
L	L1:L2
->	
<-	<-
<u> </u>	Cancel Apply
Marianta	and Case Dialog Day

2. Moving Load Analysis to Polish Standard

- Vehicle database for road bridges and pedestrian bridges as per PN-85/S-10030 has been newly implemented. Vehicle K, Vehicle S, Vehicle 2S and user-defined vehicle can be selected.
- Dynamic amplification factor can automatically be calculated considering span length. For multi-span bridges, average span length is applied as specified in Polish Standard. Average span length can automatically be calculated using "Span Start" option in Traffic Line/Surface Lane dialog box.
- Load > Moving Load > Traffic Line/Surface Lanes
- Load > Moving Load > Vehicles
- Load > Moving Load > Moving Load Cases

2. Moving Load Analysis to Polish Standard (continued)

- Limitation for vehicle 2S: One axle of Vehicle 2S consists of 4 wheels. In the program, only two wheels are allowed in one axle. Therefore, the wheel spacing in Traffic Line/Surface Lane dialog box should be entered considering the distance between the centerlines of two trucks. In moving load tracer, the wheel loads will be placed to the centerline of each truck for all the axles. However, the user can convert this loadings into a static load case in which actual positions of 4 wheels are taken into account.
- Load > Moving Load > Traffic Line/Surface Lanes
- Load > Moving Load > Vehicles
- Load > Moving Load > Moving Load Cases

Class of loads	Cumulative	Axl	e load (kN)	а
Class of loads	weight	P ₁	P ₂	P ₃	m
А	300	60	120	120	1,00

×

3. Moving Load Optimization to Russian Standard

- In the previous versions, moving load analysis was used to find critical vehicle locations on bridges in the longitudinal direction. The critical locations of vehicles in the transverse direction were determined by the user based on their experiences or trial-and-error approach.
- Now, Moving Load Optimization complements and extends the capabilities of moving load analysis and helps to significantly simplify the evaluation of critical vehicle locations. The critical locations of vehicles will be identified in the transverse direction as well as longitudinal direction according to the code provision.
- It reduces the amount of time spent defining lanes and leads to more economical design.
- Other regional codes will be included in the next upgrades.
- Load > Moving Load > Traffic Line/Surface Lane > Moving Load Optimization
- Load > Moving Load > Moving Load Cases

Road Bridge

Noving Load Optimization	on	-X	Load Case Name : MVO
Lane Name : Carriad	jeway		Description :
Traffic Lane Optimizatio	n Properties	-a	Moving Load Optimization Load Combination Type Limit State Group I Limit State Group I - Fatigue Limit State Group II Optimization
a : Eccentr	icity		Min, Vehicle Distance 1.1 m
Ontimization Lane	16		Load Case Data
Lane Width	3.5		Loaded Lane Carriageway -
Anal. Lane Offset	0.5	m	Min. Number of Vehicle 1
Wheel Spacing	1.9	m	Max. Number of Vehicle 4
Margin	0.55	m	Loading Effect
Eccentricity	0	m	Combined Independent
Vehicular Load Distributi	on Oross Be	am	Assignment Vehicle Selected Vehicle VL:AK
Traffic Line Lan	e Optimizat	tion	Moving Load Case

Define Moving Load Case

- The program will generate the centerlines of vehicles in the transverse direction within the carriageway width.
- The spacing of the centerlines is defined by the user. (Anal. Lane Offset)
- The first centerline will be generated at the centerline of carriageway.
- The second centerline will be generated away from the first centerline by the value of "Anal. Lane Offset" to the both left and right side.
- More centerlines will be generated by the user-defined spacing within the carriageway.

- Vehicle centerlines which do not satisfy the requirement of minimum spacing between vehicle and boundary of carriageway and minimum spacing between vehicles will be removed from the vehicle application.
- For example, the three centerlines in the figure below will be removed from the vehicle application.

Required Steps

1. Select 'Moving Load Optimization' function.

2. Define Carriageway data.

e Standard Vehicular Load ndard Name	Dynamic Factor		Define Moving Load Case
sicular Load Bridge and Railway Bridge wicular Load Properties hicular Load Properties hicular Load Properties hicular Load Type : AK P1=10 K P2=10 K (Unit : KN) W = 1.0 K (Unit : KN) W =	Auto Calculation - SNP Material Type RC Bridge Type Road and Town Bridge Dynamic Factor (1+Mu) 1+(454ambda)/135 Image: Comparing Co	Check on "Moving Load Optimization".	Load Case Name : MVO Description : Moving Load Optimization Load Combination Type © Limit State Group I © Limit State Group I - Fatique © Limit State Group II Optimization
	Ce Canel Appy	two vehicles in the transverse direction.	Load Case Data Loaded Lane Carriageway Min. Number of Vehicle 1 Max. Number of Vehicle 4 Loading Effect Combined Independent Assignment Vehicle Selected Vehicle VL:AK

4. Auto-generation of Load Combinations to Polish Standard

- Load combinations can automatically be generated as per PN-85/S-10030. P (basic combination), PD (additional combination) and PW (unique combination) can be considered by selecting the desired load distribution type.
- For dead loads, prestress and hydrostatic pressure loads, both favorable and unfavorable case can ben considered and different load factors will be applied in the load combinations.
- New static load case types were added such as Active/Passive Earth Pressure for Native/Made Ground of Cohesive/Non-cohesive Soil.
- Following load types are considered in the auto-generation of load combinations:
 - ✓ Static Load Cases (DL, DC, DW, PS, EP, EANN, EANC, EAMN, EAMC, EPNN, EPNC, EPMN, EPMC, WP, CF, BRK, CRL, T, W, IP)
 - ✓ Construction Stage Load Cases (Dead Load, Erection Load, Creep Secondary, Shrinkage Secondary, Tendon Secondary)
 - ✓ Settlement Load Cases
 - ✓ Moving Load Cases
- Load > Load Type > Static Loads
- Results > Load Combination

Name	:		Add
Case	:	Permanent Loads Case	Modify
Туре		Active Earth Pressure for Native Ground of Non-c 💌	Delete
Descri	iption :	Dead Load (D) Dead Load of Component and Attachments (DC) Dead Load of Wearing Surfaces and Utilities (DW)	
	No	Downdrag (DD) Weight of Leveling, Insulating, Protection (LIP)	
	1	De Weight of Pavement (PL)	
	2	EF Barth Pressure (ED)	
	3	E Active Earth Pressure for Native Ground of Non-cohesive Soil (EANN)	
	4	E Active Earth pressure for Native Ground of Cohesive Soil (EANC)	
	5	Active Earth Pressure for Made Ground of Non-conesive Soil (EAMIN)	
*		Passive Earth Pressure for Native Ground of Non-cohesive Soil (EPNN) Passive Earth Pressure for Native Ground of Cohesive Soil (EPNC) Passive Earth Pressure for Made Ground of Non-cohesive Soil (EPNN)	
•		Passive Earth Pressure for Made Ground of Cohesive Soil (EPMC) Horizonta Larth Pressure (EH) Vertical Earth Pressure (EV) Earth Surcharge Load (ES) Locked in Frection Stresses (EL) Live Load Surcharge (LS) Live Load Impact (IL) Crowd Load (CRL) Buoyancy (B) Ground Water Pressure (WP) Fluid Pressure (FP) Stream Flow Pressure (SF) Creep (CR) Shrinkage (SH)	

	NIO 1	Activo	Type	E	Description		L oadCaco	Option			
	1	Strop	Add	H	ULS / Ress. 1 5DC + 1 5DW/+ 1		Deek(ST)	Add			
H	2	Stron	Add	┢╴	ULS / Base -1 5DC+1 5DW+1	Ľ	Barrior(ST)	Code Selection			
\vdash	- 2	Servi	Add	H	SLS / Basic -1 0DC+1 0DW+1		PC & C/B(Steel O Steel O Concrete O	SRC OS	teel Compo	osite
\vdash	4	Servi	Add	F	SLS / Long-Term -1 0DC+1 0D		Wearing s	Design Code : PN	-85/S-10030		-
*				Ē	CLOT Long form free free		Prestress(Maria da Kara de Caractera Kara			_
							MVL envel	Manipulation of Construction :	stage Load Ca Inly	se Stros	
							Dead Load	ST : Static Load Case CS	: Construction	n Stage	
							Erection L		and the deside	Ĩ	
							Tendon Se	Consider Losses for Prest	age Analysis	ac.	
					=		Creep Sec		1033 2000 0030	1	
							Shrinkage	Transfer Stage : 1		Define F	Facto
								P(Base) PD(Add	ditional) 🛛	PW(Uniq	lue)
								Type of Load	L	oad Factor	•
								.,,,	Max	Min	B
											10
								Dead Weight	I.2	0.9	
								Dead Weight Weight of Non-Structural Members	1.21.5	0.9	
•								Dead Weight Weight of Non-Structural Members Prestress	 1.2 1.5 1.2 	 0.9 0.9 0.9 0.85 	5
+		Impo	rt	Aute	m			Dead Weight Weight of Non-Structural Members Prestress Hydrostatic Pressure	 1.2 1.5 1.2 1.2 1.2 	 0.9 0.9 0.9 0.85 0.85 	5

5. PSC Composite Section Design to Indian Standard

- In the previous version, only composite general section defined using SPC can be designed to IRC:112-2011. In the new version, sections defined in the Section dialog in midas Civil can also be designed. Modeling to define / modify a typical shape of composite I, T and PSC sections are much faster and easier.
- Applicable section type for design: Composite-I, Composite-T, Composite-PSC and User type

PSC > Design Parameter > IRC 112-2012

PSC Design Parameters		
Design Code : IRC: 112-2011 Input Parameters	Section Data DB/User Composite	A B C D E F G H I J K L M N O P Q R S T U V W X T 2 200 mm 72 2.Ultimate Moment Resistance 73 Positive Moment Positive Moment
Design Parameters (Ultimate limit states) Moment resistance	Section ID 4 Name COmposite TY7	74 1 Check Moment Residence Rep 75 - Design Load 76 Load Combination Name : cLCB1 77 Design Situations : Basic & Seismic
Shear resistance Strut angle for shear resistance : 45 (Degree)	BC Section Type : Composite PSC BC Slab Width 1 Steel-Box (Type 1) Steel J (Type 1)	78 Load Combination Type : MY-MAX 79 M _{Es} = 4627.631 kN · m 80 - -factor A, and factor n
Cement Class Class R (s=0.20) Modify design parameters	Girder : Num 1 Steel-Tub (Type 1) Slab Steel-Tub (Type 2) Bc 1.56 Steel-Tub (Type 2) tc 0.22 Composite-1 Hh 0 Composite-T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Output parameters	Circler Composite-PSC	87 Design strength of concrete 88 Girder : $f_{od(a)} = \alpha_{oo} \cdot f_{od(a)} / \gamma_{o} = 26.800 \text{ MPa}$
Ultimate limit states Serviceability limit states	User	89 Slab : $f_{od(s)} = \alpha_{co} \cdot f_{ok(s)} / \gamma_c = 13.400 \text{ MPa}$
Ultimate bonding registance	PSC Value Type Import	90 Of Design strength of Designment (JPC \$12:2011 C) 5 2 5)
Image behavioring resistance Image behavioring resistance Image behavioring resistance Image behavioring resistance		91 - Design strength or Remote entration (RC12.2011)(C10.3.5) 92 Ginder: f _y sig) = f _y sig) / Y _{B_NREAP} = 360.870 MPa 360.870 MPa 93 Slab: f _y sig) = f _y sig) / Y _{B_NREAP} = 360.870 MPa 360.870 MPa 94 - Calculate Neutral Axis -
 ✓ Tensile stress for prestress ✓ Crack control 	- Material	96 1) Assume neutral axis depth. 97 2) Calculate the strain of steel and tendon. 98 3) Calculate the stress of steel and tendon. 99 4) Calculate the axial force in concrete, steel, and tendon. 100 5) Check if the resultant force of cross stortion in arcs.
		101 6) Repeat step 1 through 5 until the resultant force becomes zero
	Pad C Tad/Tsb I	IO2 Compression Force (C) Tension Force (T) I03 Num. Neutral depth (kN) Concrete Reinforcement Reinforcement Tension Force (T)
PSC Design Parameters	Multiple Mo OK Cancel Es/Ec (Creep) Es/Ec (Shrinkage)	105 27832.202 0.000 0.000 6902.874 106 24116.081 0.000 0.000 6902.874 107 3 254.000 15677.388 0.000 0.000 5902.874
	Change Offset Consider Shear Deformation. Consider Warping Effect(7th DOF)	100 4 127 000 8361 274 0 000 0.000 6902 874 2 27114 109 5 63 500 4180 637 0 000 6000 6902 874 1 21127 110 6 95 250 6270 955 0 000 6902 874 0 60564 111 7 111.125 7316 114 0 000 6902 874 0 90846
	Show Calculation Results OK Cancel Apply	112 8 103.188 6793.535 0.000 0.000 6902.874 1.05986 H + + H 45_L Bending Resistance Shear Resistance Torsional Resistance TendonStress 9
	PSC Composite Section	Design Report

6. Linear independent stage analysis

- In the previous versions, the 'Independent Stage' option was only activated in the nonlinear analysis and mostly used for the backward analysis of a suspension bridge considering large displacement. Geometric nonlinear analysis was carried out independently in models of each construction stage.
- Now, linear analysis is also supported for the independent stage analysis.
- Analysis > Analysis Control > Construction Stage Analysis Control

Restart Construction Stage Analysis Select Stages for Restart Inalysis Option Analysis type Inear Analysis Nonlinear Analysis Control Indude Equilibrium Element Nodal Forces Indude Equilibrium Element Nodal Forces Indude Time Dependent Effect P-Delta Analysis Control Indude Time Dependent Effect P-Delta Analysis Control Indude Time Dependent Effect Time Dependent Effect Control Indude Time Dependent Effect Time Dependent Effect Control Indude Time Dependent Effect Time Dependent Effect Control Indude Time Dependent Effect Control Induce Time Dependent Effect Control Induce Time Dependent Effect Control Induce Time Dependent Dependent Effect Control Induce Time Dependent Effect Control Induce Time Dependent Dependent Dependent Dependent Dependent Dependent D	last Stage Other Stage	Cable-Pretension Force Control Internal Force External Force Add Replace
alysis Option nalysis type Linear Analysis Nonlinear Analysis Control Indude Equilibrium Element Nodal Forces Indude P-Delta Effect P-Delta Analysis Control Indude Time Dependent Effect Add Modify Delete Beam Section Property Changes	Restart Construction Stage Analysis Select Stages for Restart	Initial Force Control
Include Equilibrium Element Nodal Forces Include P-Delta Effect P-Delta Analysis Control Include Time Dependent Effect Cases to be Distinguished from Dead Load for C.S. Output No Load Case Name Type Case 1 Modify Delete Beam Section Property Changes	alysis Option alysis type Linear Analysis Nonlinear Analysis Control Independent Stage	Change Cable Element to Equivalent Truss Element for Post C.S. Apply Initial Member Force to C.S.
ad Cases to be Distinguished from Dead Load for C.S. Output No Load Case Name Type Case 1 Case Add Modify Delete Beam Section Property Changes	Include Equilibrium Element Nodal Forces Include P-Delta Effect Include Time Dependent Effect Time Dependent Effect	Initial Displacement for C.S. Initial Tangent Displacement for Erected Structures Initial Tangent Displacement for Erected Structures Initial Tangent Displacement for Erected Structures
Add Consider Stress Decrease at Lead Length Zone by Post-tension Modify Inear Interpolation Delete Beam Section Property Changes	Dad Cases to be Distinguished from Dead Load for C.S. Output	Lack-of-Fit Force Control Apply Camber Displacement to C.S. (if Defined)
Delete Beam Section Property Changes	Modify	Consider Stress Decrease at Lead Length Zone by Post-tension O Linear Interpolation Constant : Stress *
	Delete	Beam Section Property Changes

7. Time Dependent Materials as per New Zealand Standard

- Time dependent material properties: Creep and Shrinkage can be defined as per New Zealand Bridge Design Manual (SP/M/022).
- Final drying basic shrinkage table is added as per Table 4.4 of the bridge design manual.

Add/Modify Time Dependent Material (Creep / Shrinkage)	Show Time Dependent Material Function		X
Name : C45 Code : NZ Bridge(SP/M/022)	Creep Function Data Type Creep Coefficient Shrinkage Strain Start Loading: 10 Day	Graph Options	Y-axis log scale
Compressive strength of concrete at the age of 28 days : 4.3 N/mm² Exposure Environment Arid Interior Temperate Inland Tropical or Near Costral Relative Humidity Factor for Shrinkage (0.20~0.72) 0.72 Hypothetical Thickness : h = 2 Ag / u (Ag : Section Area, u : Perimeter in contact with atmosphere)	End Loading : 10000 Day Num. of Steps : 24 Time (day) Value (1 13.34 3.4285e-001 2 17.78 6.1327e-001 3 23.71 8.7161e-001 4 14237 + 000	3 2.0 2.4 2.4 U 2.2 U 2.4 U 2.2 U 2.2 U 2.2 U 2.2 U 2.2 U 2.2 U 2.4 U 2.2 U 2.4 U 2.4	
Drying Basic Shrinkage Strain (10^-6) (570~1500) 990(Auddand) Age of concrete at the beginning of shrinkage : Show Result OK Cancel Apply	4 31.02 1.123704000 5 42.17 1.36890400 6 56.23 1.60470400 7 74.99 1.827704000 8 100.00 2.034704000 9 133.35 2.2234000 10 177.92 2.303204000	U 0.8 0.6 0.4 0.4 0.2 0 0 0 1000 2000 3000 4000 50 Time (d	00 6000 7000 8000 9000 1050 ay)
Creep/Shrinkage definition dialog box		Creep Curve	
Final Drying Shrinkage Data Final Drys (Weather Content of Content	sterton,Wellington,Blenheim,Kaikoura) milton) uthern greywacke) ,Invercargill)		

8. Time Dependent Materials as per Australian Standard

• Time dependent material properties: Creep and Shrinkage can be defined as per AS 5100.5 – 2016.

Civil 2017 Pre & Post-Processing

1. Addition of PSC Super-T and I-girder Section DB

- PSC section database as per AS 5100.5 and NZ Transport Agency is newly added for PSC super-T and I-girder bridges.
- Following sections are available:
 - ✓ AS 5100.5 Super-T: Type T1-2 750 mm Deep, T1-2 1000 mm Deep, T1-2 1200 mm Deep, T1-2 1500 mm Deep, T1-2 1800 mm Deep
 - ✓ AS 5100.5 I-girder: Type-1 750mm Deep, Type-2 900mm Deep, Type-3 1150mm Deep, Type-4 1400mm Deep
 - ✓ NZ Transport Agency Super-T: 1225mm Deep Super-T beam 30m Span, 1225mm Deep Super-T beam 25m & 27.5m Span, 1025mm Deep Super-T beam 25m & 27.5m Span
 - ✓ NZ Transport Agency I-girder: 1600mm Deep I-beam, 1500mm Deep I-beam

Properties > Section Properties

The. for Torsion(nn.) U2p 42.3.4000 Imm 0 nm U2p 326.5320 nm Oyb 241668.5187 mm* Vorging Check Auto User Position Qy Auto Thk. for Shear(Dta) Near Check Auto User Position Qy Auto Name* 0 mm 22: Centod mm* 0 22: Centod mm* Offset : Display Centrod Show Calculation Results OK Cancel OK Cancel OK Cancel OK Cancel OK Cancel Consider Near Deformation Consider Warping Check Auto Variation Og Consider Shar Deformation Consider Shar Deformation Consider Shar Deformation Variation Offset : Change Offset Display Centroid Consider Shar Deformation Consider Shar Deform	Section Data DB/User Value SRC Combined PSC Tapered Composite Steel Girder Section ID 52 PSC-Value Name T1-2 750 Mesh Size for Stiff, Calc. mm Section Data Calc. Section Properties Area 4.27900e+005 mm² Asy 1.90136e+005 mm² Asz 1.26864e+005 mm⁴ Izz 8.29301e+010 mm⁴ Cyp 1000.0000 mm Cyp 1000.0000 mm 	Select PSC DB Code AS Select DB 2:T1-2:1000 3:T1:2:1000 3:T1:2:1000 Select DB Select DB 2:1900 Select DB Select DB <th></th>	
	Thk. for Torsion(min.) Czp 423.4080 mm Qub 2241668.5187 mm ² - Consider Shear Deformation Consider Warping Effect(7th DOF) Shear Check Warping Check Auto User Position Qy Auto Thk. for Shear(total) Auto Z1: 0 mm 0 mm 0 Z3: 0 mm 0 mm 0 Gffset : Centroid 0 mm ³ 0 mm Show Calculation Results OK Cancel Apply		

Civil 2017 Pre & Post-Processing

2. Critical stress locations due to warping for PSC section type

- The locations for the critical normal stresses and shear stresses due to warping are automatically identified for the PSC section type including tapered PSC section.
- The locations can be viewed from the Section Manager dialog.
- Two points for the maximum/minimum normal stresses and four points for the maximum/minimum shear stresses in the xy and xz plane due to warping.

2. Maximum stress locations due to warping for PSC section type (continued)

Normal stresses and shear stresses due to bending, torsion and warping can be checked for the added six points in the Beam Stresses (PSC) menu and the 'Beam Detail Analysis' menu.

Results > Stresses > Beam Stresses (PSC) Results > Detail > Beam Element > Beam Detail Analysis

am Stresses(PSC) 🔻	A S	Section	Sax(Warping)	Ssy(Mt) (N/mm^2)	Ssy(Mw) (N/mm^2)	Ssz(Mt) (N/mm^2)	Ssz(Mw) (N/mm^2)	Combined(Ss (N/mm^2)	y) Com	nbined(Ssz) N/mm^2)
and Course (Courseiners	-	Pos-1	_6 5295e_001	_3.0337e-001	_1.0655e_001	_1 5527e_00	2 9205e+000	_4 0993	e-001	2 7652e+000
oad Cases/Combinations		Pos-2	6 5295e-001	-3.0337e-001	-1.0655e-001	1.5527e-00	1 7.3458e-001	-4.0993	e-001	8 8985e-001
CS: Summation		Pos-3	5.6977e+000	4.0068e-001	1.5966e-001	4.1280e-00	1 3.8710e-001	-4.0000	0-001	0.00000-001
Step Last Step 🔻		Pos-4	-5.6977e+000	4.0068e-001	1.5966e-001	-4.1280e-00	-3.8710e-001	Beam	Detail	
√ Max/Min Diagram		Pos-5	1.3134e+000	1.2787e+000	-1.5339e-001	-7.6233e-00	-3.7651e-001	Rea	m Datail Analysi	ia -
ection Position		Pos-6	-1.3134e+000	1.2787e+000	-1.5339e-001	7.6233e-00	1 3.7651e-001	Dea	im Detail Analysi	15
Position 1 1 1+z 2		Pos-7	-2.6894e-001	1.4324e-001	-1.0355e-002	-3.0023e+00	10 -1.9989e-001	Loi	ad Cases/Combi	inations
Position 2		Pos-8	3.3342e-001	1.4324e-001	-1.0355e-002	3.0023e+00	1.9989e-001		C. C. marting	
Position 3		Pos-9	-3.4205e+000	-7.1397e-003	1.2924e-001	-2.6449e+00	0 -2.2573e-001		s: summation	
Position 4 9 10		Pec 10	3.4205e+000	-7.1397e-003	1.2924e-001	2.6449e+00	0 2.2573e-001	St	ep Last	Step 🔻
Position 5		Pos-11	-5.9537e+000	2.6888e+000	-6.7300e-003	5.5147e+00	0 -7.6213e-001	Ele	ement Number:	38
Position 6 Position 7		Pos-12	-2.9028e+000	-1.4263e-001	-8.6986e-002	2.2041e+00	0 -8.9425e-001	· · · ·		
Position 8 Position 9		P0S-13	-1.3134e+000	-3.0040e-002	-5.96656-002	2.2/12e+00	2.6601e-001	Str	ress Section	
Position 11 Position 12		P08-14	2.95376+000	1.02538-001	1.02546-001	2.30346-00	0 6.4246e.001		Normal	Non-Mison
Position 13 Position 14	-	Pos-16	2.30200+000	3.0040e-002	-1.0701e-001	2 2712e+00	0 -2.8820e-001			Max Shoar
Position 15 Position 16		100-10	2.07000.000	0.00400-002	-1.20100-001	2.27120.00	2.00200-001		Tau_xy	Prize (max)
Max Min					Beam	Stresses (PSC)			Tau_xz	Princ. (max) Princ. (max)
omponents) Sig-xx(Axial)									V Fx	Fy Fz
omponents) Sig-xx(Axial)) Sig-xx(Moment-y)					F	osition S	tress y c	oordi.	Fx Mx	Fy Fz My Mz
omponents) Sig-xx(Axial)) Sig-xx(Moment-y)) Sig-xx(Moment-z)) Sig-xx(Moment-z)					F	Position S Pos-6 -5.06	tress y c 222e+000 3.675	oordi. 00e+003	V Fx	Fy Fz My Mz Mt Mw
omponents) Sig-xx(Axial)) Sig-xx(Moment-y)) Sig-xx(Moment-z)) Sig-xx(Bar)) Sig-xx(Bar)	ſ				F	Position 5 Pos-6 -5.06 Pos-7 -6.55	tress y c 222e+000 3.675 928e+000 -3.550	oordi.	<pre>✓ Fx Mx ✓</pre>	Fy Fz My ØMz Mt Mw
Sig-xx(Axia) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Bar) Sig-xx(Summation) Sig-zz		40				Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.556	oordi. 00e+003 00c .us ue+003	<pre>V Fx</pre>	Fy Fz My VMz Mt Mw
omponents Sig-xx(Axial) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Bar) Sig-xz(Summation) Sig-zz Sig-xz(shear) Sig-xz(shear)		12x			• ¹⁶	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.557 601e+001 -3.55	00000000000000000000000000000000000000	✓ Fx Mx ✓ ✓ Mb	Fy Fz My VMz Mt Mw Apply Cl
omponents Sig-xx(Axial) Sig-xx(Moment-y) Sig-xx(Bar) Sig-xx(Summation) Sig-zz Sig-xz(shear) Sig-xz(shear) Sig-xz(shear) Sig-xz(bar)	1	12 ax	5		_16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02 Pos-10 -1.03	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.556 601e+001 -3.550 294e+001 3.550	oordi. 00e+003 Je+003 J0e+003 J0e+003 -1. 00e+003 -1.	✓ Fx Mx ✓ ✓ Mb 13447e+00	Fy Fz My VMz Mt Mw Apply Ck
Sig-xx(Axial) Sig-xx(Axial) Sig-xx(Moment-y) Sig-xx(Bar) Sig-xx(Summation) Sig-xx(Summation) Sig-xx(Second) Sig-xx(summation) Sig-xx(summation) Sig-xx(summation) Sig-xx(summation) Sig-xz(stater) Sig-xz(bear) Sig-xz(bear) Sig-sz(stater) Sig-sz(stater) Sig-sz(stater) Sig-sz(stater)		1 <mark>2</mark> x	5		_16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02 Pos-10 -1.03 Pos-11 -1.17	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.557 601e+001 -3.555 294e+001 3.550 985e+001 -3.094	00000000000000000000000000000000000000	✓ Fx	Fy Fz My VMz Mt Mw Apply Cli 3 3 3
Sig-xx(Axia) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Signation) Sig-xx(shear) Sig-xz(shear) Sig-xz(bar) Sig-xz(bar) Sig-sx(shear) Sig-sz(bar) Sig-sz(bar) Sig-sz(shear) Sig-sz(bar) Sig-sg(shear)		13x	5		16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02 Pos-10 -1.03 Pos-11 -1.17 Pos-12 -3.80	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.550 601e+001 -3.550 294e+001 3.550 985e+001 -3.094 360e+000 -6.257	oordi. 00e+003 Je+003 Je+003 J0e+003 -1. 53e+003 -1. 19e+003 8.	✓ Fx	Fy Fz My VMz Mt Mw Apply Cli 3 3 3 2
omponents Sig-xx(Axial) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Bar) Sig-xz(Summation) Sig-zz Sig-xz(shear) Sig-xz(torsion) Sig-xz(torsion) Sig-xz(bar) Sig-st(bar) Sig-st(shear) Sig-fs1 Sig-fs1 Sig-fs1 Sig-fs2 Tdt DOF Sig-fs2		1 <mark>3</mark> x	5		16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02 Pos-10 -1.03 Pos-11 -1.17 Pos-12 -3.80 Pos-13 -4.88	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.550 601e+001 -3.550 294e+001 3.550 985e+001 -3.094 360e+000 -6.257 532e+000 3.662	oordi. 00e+003 0e+003 0e+003 0e+003 -1. 00e+003 -1. 53e+003 -1. 19e+003 8. 89e+003 5.	✓ Fx	Fy Fz My VMz Mt Mw Apply Ch 3 3 3 2 2
omponents Sig-xx(Axia) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Bar) Sig-xx(Summation) Sig-zz Sig-xz(shear) Sig-zz(torsion) Sig-zz(torsion) Sig-zz(bar) Sig-zs(shear) Sig-zs(shear) Sig-zs(shear) Sig-zs(shear) Sig-zs(shear) Sig-ss(shear+torsion) Sig-Ps1 Sig-Ps2 Structure Sax(Warping)		1 2 x	5 7 9		16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-10 -1.02 Pos-11 -1.17 Pos-12 -3.80 Pos-13 -4.88 Pos-14 -1.18	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.550 601e+001 -3.550 294e+001 3.550 985e+001 -3.094 360e+000 -6.257 532e+000 3.662 589e+001 3.094	oordi. 00e+003 Je+003 00e+003 00e+003 -1. 53e+003 19e+003 8. 89e+003 5. 53e+003 -1.	✓ Fx □ Mx ✓ Mb □ 13447e+00 13447e+00 60469e+00 36639e+00 34716e+00 60469e+00	Fy Fz My VMz Mt Mw Apply Ck 3 3 3 3 2 2 3
Sig-xx(Axial) Sig-xx(Axial) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Moment-z) Sig-xx(Moment-z) Sig-xx(Moment-z) Sig-xx(Moment-z) Sig-xx(Intervent and the second secon		1ax	5 7 9 4	11	16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02 Pos-10 -1.03 Pos-11 -1.17 Pos-12 -3.80 Pos-13 -4.88 Pos-14 -1.18 Pos-15 -3.92	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.550 601e+001 -3.550 294e+001 3.550 985e+001 -3.094 360e+000 -6.257 532e+000 3.662 589e+001 3.094 571e+000 6.257	oordi. 00e+003 00e+003 00e+003 00e+003 10e+003 53e+003 19e+003 89e+003 55 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 53e+003 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	✓ Fx Mx Mx Mx Mb 13447e+00 13447e+00 60469e+00 36639e+00 34716e+00 60469e+00 36639e+00	Fy Fz My ♥Mz Mt Mw Apply Ck 3 3 3 2 2 2 3 2
omponents Sig-xx(Axial) Sig-xx(Moment-y) Sig-xx(Moment-z) Sig-xx(Bar) Sig-xz(summation) Sig-zz Sig-xz(shear) Sig-xz(bar) Sig-s		1 3 x	5 7 9 4	.11	16	Position S Pos-6 -5.06 Pos-7 -6.55 Pos-8 -6.62 Pos-9 -1.02 Pos-10 -1.03 Pos-11 -1.17 Pos-12 -3.80 Pos-13 -4.88 Pos-14 -1.18 Pos-15 -3.92	Stress y c 222e+000 3.675 928e+000 -3.550 856e+000 3.557 601e+001 -3.550 294e+001 3.550 985e+001 -3.094 360e+000 -6.257 532e+000 3.662 589e+001 3.094 571e+000 6.257 818e+000 -1.055	oordi. 00e+003 00e+003 00e+003 00e+003 1. 53e+003 53e+003 53e+003 53e+003 53e+003 53e+003 5. 53e+003 1. 19e+003 8. 89e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 19e+003 1. 1. 19e+003 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	✓ Fx Mx ✓ Mx ✓ Mb 13447e+00 13447e+00 60469e+00 36639e+00 34716e+00 60469e+00 36639e+00 36639e+00 04085e+00	Fy Fz My VMz Mt Mw Apply Ck 3 3 3 2 2 3 2 3 2 3